Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.147
Filtrar
1.
J Chem Ecol ; 50(3-4): 152-167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353894

RESUMO

Host plant consumption and pathogen infection commonly influence insect traits related to development and immunity, which are ultimately reflected in the behavior and physiology of the insect. Herein, we explored changes in the metabolome of a generalist insect herbivore, Vanessa cardui (Lepidoptera: Nymphalidae), in response to both dietary variation and pathogen infection in order to gain insight into tritrophic interactions for insect metabolism and immunity. Caterpillars were reared on two different host plants, Plantago lanceolata (Plantaginaceae) and Taraxacum officinale (Asteraceae) and subjected to a viral infection by Junonia coenia densovirus (JcDV), along with assays to determine the insect immune response and development. Richness and diversity of plant and caterpillar metabolites were evaluated using a liquid chromatography-mass spectrometry approach and showed that viral infection induced changes to the chemical content of V. cardui hemolymph and frass dependent upon host plant consumption. Overall, the immune response as measured by phenoloxidase (PO) enzymatic activity was higher in individuals feeding on P. lanceolata compared with those feeding on T. officinale. Additionally, infection with JcDV caused suppression of PO activity, which was not host plant dependent. We conclude that viral infection combined with host plant consumption creates a unique chemical environment, particularly within the insect hemolymph. Whether and how these metabolites contribute to defense against viral infection is an open question in chemical ecology.


Assuntos
Herbivoria , Metaboloma , Taraxacum , Animais , Taraxacum/química , Taraxacum/metabolismo , Larva/virologia , Larva/fisiologia , Plantago/química , Plantago/fisiologia , Hemolinfa/metabolismo , Hemolinfa/química , Monofenol Mono-Oxigenase/metabolismo , Borboletas/fisiologia , Borboletas/virologia , Borboletas/imunologia
2.
Fish Shellfish Immunol ; 141: 109001, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37597641

RESUMO

Lectins are non-immune glycoproteins or proteins having a unique capacity to interact with carbohydrate ligands found on the surface of their host cells. In the present investigation, the lectin was purified from the hemolymph of freshwater crab, Oziotelphusa naga and its antimicrobial, anti-inflammatory and anti-arthritic activity was analysed. The preliminary characterization of the hemagglutinin was carried out to identify the erythrocyte and sugar specificity, optimum pH and temperature and cation dependency. The agglutinin was found to be highly specific to rabbit erythrocyte and inhibited by fetuin and α-lactose. Maximum hemagglutination activity was noted at pH 7.5-8 and temperature 20-40 °C. An O-acetyl sialic acid specific 75 kDa hemolymph lectin, designated as NagLec was isolated from the freshwater crab, Oziotelphusa naga by affinity chromatography on fetuin coupled Sepharose 4 B, with a purification fold of 185. The bacteria Staphylococcus aureus, Proteus mirabilis and fungus Candida albicans had the greatest zone of inhibition when treated with NagLec. The results of the Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) assays showed that the purified lectin inhibited the growth of Staphylococcus aureus at 0.031 and 0.065 µg/ml, which proved the bactericidal property of NagLec. NagLec generated alterations on the bacterial cells and led to protein leakage, which was dosage (24 and 48 µg/ml) and time dependent (10-40 min). COX and LOX enzyme was inhibited to 49.43% and 61.81% with 100 µg/ml concentration of NagLec respectively, demonstrating NagLec's ability to reduce inflammation. Furthermore, NagLec (500 µg) suppressed protein denaturation up to 77.12% whereas diclofenac sodium (a standard drug) was inhibited by 89.36%. The results indicate that NagLec, a sialic acid specific lectin isolated from the freshwater crab O. naga could be formulated as a nano drug in future owing to its antimicrobial, anti-inflammatory and anti-arthritic potential that could be targeted to specific pathogenic microbes and treat arthritis.


Assuntos
Anti-Infecciosos , Braquiúros , Animais , Coelhos , Lectinas/química , Braquiúros/metabolismo , Hemolinfa/química , Carboidratos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Anti-Inflamatórios/farmacologia , Fetuínas/análise
3.
Nutr Neurosci ; 26(3): 217-227, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35156560

RESUMO

Nutritional status affects cognitive function in many types of organisms. In the pond snail Lymnaea stagnalis, 1 day of food deprivation enhances taste aversion learning ability by decreasing the serotonin (5-hydroxytryptamin; 5-HT) content in the central nervous system (CNS). On the other hand, after 5 days of food deprivation, learning ability and the CNS 5-HT concentration return to basal levels. How food deprivation leads to alterations of 5-HT levels in the CNS, however, is unknown. Here, we measured the concentration of the 5-HT precursor tryptophan in the hemolymph and CNS, and demonstrated that the CNS tryptophan concentration was higher in 5-day food-deprived snails than in non-food-deprived or 1-day food-deprived snails, whereas the hemolymph tryptophan concentration was not affected by the duration of food deprivation. This finding suggests the existence of a mediator of the CNS tryptophan concentration independent of food deprivation. To identify the mediator, we investigated autophagic flux in the CNS under different food deprivation conditions. We found that autophagic flux was significantly upregulated by inhibition of the tropomyosin receptor kinase (Trk)-Akt-mechanistic target of rapamycin complex 1 (MTORC1) pathway in the CNS of 5-day food-deprived snails. Moreover, when autophagy was inhibited, the CNS 5-HT content was significantly downregulated in 5-day food-deprived snails. Our results suggest that the hemolymph tryptophan concentration and autophagic flux in the CNS cooperatively regulate learning ability affected by different durations of food deprivation. This mechanism may underlie the selection of behaviors appropriate for animal survival depending on the degree of nutrition.


Assuntos
Privação de Alimentos , Serotonina , Animais , Privação de Alimentos/fisiologia , Serotonina/metabolismo , Triptofano , Hemolinfa/química , Paladar/fisiologia , Aprendizagem da Esquiva/fisiologia , Sistema Nervoso Central/metabolismo , Lymnaea/fisiologia
4.
Biochimie ; 206: 36-48, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36216224

RESUMO

Lectins or agglutinins are mainly proteins or glycoproteins, reported to uphold an ability to agglutinate the red blood cells (RBCs) with a known sugar specificity in a diverse group of organisms. In the present study, we purified a hemocyanin (named as MmHc) from a shrimp, Metapenaeus monoceros by size-exclusion chromatography. Further characterization revealed that the purified MmHc showed hemagglutination activity that was found to be specifically inhibited by Lewis B and Lewis Y tetrasaccharides. The MmHc displayed two oligomers of molecular weight approximately ∼78 and ∼85 kDa in SDS-PAGE. The native molecular mass of MmHc was found to be ∼457 kDa as determined by size-exclusion chromatography which indicated that the purified MmHc is an oligomeric protein. MmHc showed a maximum activity within pH 7.0-8.0, while a wide range of temperature stability was observed between 4 to 55 °C, however, it did not show any dependency on metal ions for binding. Subsequently, the analysis of the peptides by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) identified the purified MmHc as shrimp hemocyanin showing significant similarity to the hemocyanin of Penaeus vannamei. The results of multiple sequence alignment and detailed analysis of the molecular interactions predicted by AutoDock suggested that besides the oxygen carrier function, this MmHc may have multiple roles and can interact well with the Lewis Y antigen through a typical sugar binding motif containing the similar hydrophilic amino acids as the conserved residues.


Assuntos
Penaeidae , Animais , Penaeidae/metabolismo , Hemocianinas/química , Hemocianinas/metabolismo , Hemolinfa/química , Hemolinfa/metabolismo , Lectinas/farmacologia , Lectinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Açúcares/análise
5.
Parasit Vectors ; 15(1): 179, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610668

RESUMO

BACKGROUND: Tick hemolymph bathes internal organs, acts as an exchange medium for nutrients and cellular metabolites, and offers protection against pathogens. Hemolymph is abundant in proteins. However, there has been limited integrated protein analysis in tick hemolymph thus far. Moreover, there are difficulties in differentiating tick-derived proteins from the host source. The aim of this study was to profile the tick/host protein components in the hemolymph of Haemaphysalis flava. METHODS: Hemolymph from adult engorged H. flava females was collected by leg amputation from the Erinaceus europaeus host. Hemolymph proteins were extracted by a filter-aided sample preparation protocol, digested by trypsin, and assayed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). MS raw data were searched against the UniProt Erinaceidae database and H. flava protein database for host- and tick-derived protein identification. Protein abundance was further quantified by intensity-based absolute quantification (iBAQ). RESULTS: Proteins extracted from hemolymph unevenly varied in size with intense bands between 100 and 130 kDa. In total, 312 proteins were identified in the present study. Therein 40 proteins were identified to be host-derived proteins, of which 18 were high-confidence proteins. Top 10 abundant host-derived proteins included hemoglobin subunit-α and subunit-ß, albumin, serotransferrin-like, ubiquitin-like, haptoglobin, α-1-antitrypsin-like protein, histone H2B, apolipoprotein A-I, and C3-ß. In contrast, 169 were high-confidence tick-derived proteins. These proteins were classified into six categories based on reported functions in ticks, i.e., enzymes, enzyme inhibitors, transporters, immune-related proteins, muscle proteins, and heat shock proteins. The abundance of Vg, microplusin and α-2-macroglobulin was the highest among tick-derived proteins as indicated by iBAQ. CONCLUSIONS: Numerous tick- and host-derived proteins were identified in hemolymph. The protein profile of H. flava hemolymph revealed a sophisticated protein system in the physiological processes of anticoagulation, digestion of blood meal, and innate immunity. More investigations are needed to characterize tick-derived proteins in hemolymph.


Assuntos
Ixodidae , Carrapatos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Cromatografia Líquida , Feminino , Hemolinfa/química , Ixodidae/química , Ixodidae/genética , Proteínas/análise , Espectrometria de Massas em Tandem
6.
Anal Bioanal Chem ; 414(1): 533-543, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34184104

RESUMO

The crustacean stomatogastric ganglion (STG) is a valuable model for understanding circuit dynamics in neuroscience as it contains a small number of neurons, all easily distinguishable and most of which contribute to two complementary feeding-related neural circuits. These circuits are modulated by numerous neuropeptides, with many gaining access to the STG as hemolymph-transported hormones. Previous work characterized neuropeptides in the hemolymph of the crab Cancer borealis but was limited by low peptide abundance in the presence of a complex biological matrix and the propensity for rapid peptide degradation. To improve their detection, a data-independent acquisition (DIA) mass spectrometry (MS) method was implemented. This approach improved the number of neuropeptides detected by approximately twofold and showed greater reproducibility between experimental and biological replicates. This method was then used to profile neuropeptides at different stages of the feeding process, including hemolymph from crabs that were unfed, or 0 min, 15 min, 1 h, and 2 h post-feeding. The results show differences both in the presence and relative abundance of neuropeptides at the various time points. Additionally, 96 putative neuropeptide sequences were identified with de novo sequencing, indicating there may be more key modulators within this system than is currently known. These results suggest that a distinct cohort of neuropeptides provides modulation to the STG at different times in the feeding process, providing groundwork for targeted follow-up electrophysiological studies to better understand the functional role of circulating hormones in the neural basis of feeding behavior.


Assuntos
Braquiúros , Neoplasias , Animais , Comportamento Alimentar , Hemolinfa/química , Hormônios/análise , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
J. venom. anim. toxins incl. trop. dis ; 28: e20210124, 2022. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1386128

RESUMO

Triatomines are blood-feeding arthropods belonging to the subfamily Triatominae (Hemiptera; Reduviidae), capable of producing immunomodulatory and water-soluble molecules in their hemolymph, such as antimicrobial peptides (AMPs). In this work, we evaluated the antifungal and immunomodulatory activity of the hemolymph of Meccus pallidipennis (MPH) and Rhodnius prolixus (RPH) against Cryptococcus neoformans. Methods: We assessed the activity of the hemolymph of both insects on fungal growth by a minimum inhibitory concentration (MIC) assay. Further, RAW 264.7 macrophages were cultivated with hemolymph and challenged with C. neoformans. Then, their phagocytic and killing activities were assessed. The cytokines MCP-1, IFN-γ, TNF-α, IL-10, IL-12, and IL-6 were measured in culture supernatants 4- and 48-hours post-infection. Results: Both hemolymph samples directly affected the growth rate of the fungus in a dose-dependent manner. Either MPH or RPH was capable of inhibiting fungal growth by at least 70%, using the lowest dilution (1:20). Treatment of RAW 264.7 macrophages with hemolymph of both insects was capable of increasing the production of MCP-I and TNF-α. In addition, when these cells were stimulated with hemolymph in the presence of C. neoformans, a 2- and a 4-fold increase in phagocytic rate was observed with MPH and RPH, respectively, when compared to untreated cells. For the macrophage killing activity, MPH decreased in approximately 30% the number of viable yeasts inside the cells compared to untreated control; however, treatment with RPH could not reduce the total number of viable yeasts. MPH was also capable of increasing MHC-II expression on macrophages. Regarding the cytokine production, MCP-I and TNF-α, were increased in the supernatant of macrophages treated with both hemolymphs, 4 and 48 hours after stimulation. Conclusion: These results suggested that hemolymph of triatomines may represent a source of molecules capable of presenting antifungal and immunomodulatory activity in macrophages during fungal infection.(AU)


Assuntos
Animais , Hemolinfa/química , Triatominae/microbiologia , Criptococose/terapia , Cryptococcus neoformans/imunologia , Antifúngicos/uso terapêutico , Imunomodulação/fisiologia
8.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577107

RESUMO

The problem of a growing resistance of bacteria and other microorganisms to conventional antibiotics gave rise to a search for new potent antimicrobial agents. Insect antimicrobial peptides (AMPs) seem to be promising novel potential anti-infective therapeutics. The dipeptide ß-alanyl-tyrosine (ß-Ala-Tyr) is one of the endogenous insect toxins exhibiting antibacterial activity against both Gram-negative and Gram-positive bacteria. Prior to testing its other antimicrobial activities, it has to be prepared in a pure form. In this study, we have developed a capillary zone electrophoresis (CZE) method for analysis of ß-Ala-Tyr isolated from the extract of the hemolymph of larvae of the fleshfly Neobellieria bullata by reversed-phase high-performance liquid chromatography (RP-HPLC). Based on our previously described correlation between CZE and free-flow zone electrophoresis (FFZE), analytical CZE separation of ß-Ala-Tyr and its admixtures have been converted into preparative purification of ß-Ala-Tyr by FFZE with preparative capacity of 45.5 mg per hour. The high purity degree of the ß-Ala-Tyr obtained by FFZE fractionation was confirmed by its subsequent CZE analysis.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Dipeptídeos/química , Dipeptídeos/isolamento & purificação , Eletroforese/métodos , Hemolinfa/química , Sarcofagídeos/química , Animais , Cromatografia Líquida de Alta Pressão , Larva/química
9.
J Phys Chem Lett ; 12(37): 8956-8962, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34505773

RESUMO

Gold nanoparticles (Au NPs) have good biocompatibility and special quantum effects. In this Letter, we embedded Au NPs into silkworm hemolymph (SH) to improve the performance of the device and fabricated Al/SH:Au NPs/indium tin oxide (ITO)/glass resistive random access memory. The device exhibits a bipolar switching behavior with a retention time of 104 s. Compared with the Al/SH/ITO device without Au NPs, the device has a higher ON/OFF current ratio (>105) and a smaller Vreset. The improvement in device performance is attributed to the fact that Au NPs act as the electron-trapping center in the device; a Coulomb blockade occurs after electrons are trapped, thereby increasing the resistance of the device in the high-resistance state. Using optimized devices can realize multilevel data storage and can also simulate synaptic characteristics such as potentiation and depression. The device is expected to be applied to high-density, low-cost, degradable, and biocompatible storage devices and neuromorphic computing in the future.


Assuntos
Ouro/química , Armazenamento e Recuperação da Informação , Nanopartículas Metálicas/química , Sinapses/fisiologia , Animais , Bombyx/metabolismo , Elétrons , Vidro/química , Hemolinfa/química , Compostos de Estanho/química
10.
Mar Drugs ; 19(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34564136

RESUMO

Lectin from the bivalve Glycymeris yessoensis (GYL) was purified by affinity chromatography on porcine stomach mucin-Sepharose. GYL is a dimeric protein with a molecular mass of 36 kDa, as established by SDS-PAGE and MALDI-TOF analysis, consisting of 18 kDa subunits linked by a disulfide bridge. According to circular dichroism data, GYL is a ß/α-protein with the predominance of ß-structure. GYL preferentially agglutinates enzyme-treated rabbit erythrocytes and recognizes glycoproteins containing O-glycosidically linked glycans, such as porcine stomach mucin (PSM), fetuin, thyroglobulin, and ovalbumin. The amino acid sequences of five segments of GYL were acquired via mass spectrometry. The sequences have no homology with other known lectins. GYL is Ca2+-dependent and stable over a range above a pH of 8 and temperatures up to 20 °C for 30 min. GYL is a pattern recognition receptor, as it binds common pathogen-associated molecular patterns, such as peptidoglycan, LPS, ß-1,3-glucan and mannan. GYL possesses a broad microbial-binding spectrum, including Gram-positive (Bacillus subtilis, Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Vibrio proteolyticus), but not the fungus Candida albicans. Expression levels of GYL in the hemolymph were significantly upregulated after bacterial challenge by V. proteolyticus plus environmental stress (diesel fuel). Results indicate that GYL is probably a new member of the C-type lectin family, and may be involved in the immune response of G. yessoensis to bacterial attack.


Assuntos
Lectinas/química , Lectinas/farmacologia , Animais , Bactérias , Bivalves , Meio Ambiente , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemaglutininas/metabolismo , Hemolinfa/química , Estresse Fisiológico
11.
J Biochem Mol Toxicol ; 35(10): e22877, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382705

RESUMO

Mygalin, a diacylspermidine that is naturally found in the hemolymph of the spider Acanthoscurria gomesiana, is of interest for development as a potential analgesic. Previous studies have shown that acylpolyamines modulate glutamatergic receptors with the potential to alter pain pathways. This study aimed to evaluate the effects of mygalin on acute and chronic pain in rodents. For evaluation of acute pain, Wistar rats were subjected to tail-flick and hot-plate nociceptive tests. For the evaluation of chronic neuropathic pain, a partial ligation of the sciatic nerve was performed and, 21 days later, animals were examined in hot-plate, tail-flick, acetone, and von Frey tests. Either Mygalin or vehicle was microinjected in the dorsal raphe nucleus (DRN) before the tests. Another group was pretreated with selective antagonists of glutamate receptors (LY 235959, MK-801, CNQX, and NBQX). Mygalin decreases nociceptive thresholds on both acute and chronic neuropathic pain models in all the tests performed. The lowest dose of mygalin yielded the most effective nociception, showing an increase of 63% of the nociceptive threshold of animals with neuropathic chronic pain. In conclusion, mygalin microinjection in the DRN results in antinociceptive effect in models of neuropathic pain, suggesting that acylpolyamines and their derivatives, such as this diacylspermidine, could be pursued for the treatment of neuropathic pain and development of selective analgesics.


Assuntos
Dor Aguda/tratamento farmacológico , Analgésicos/administração & dosagem , Dor Crônica/tratamento farmacológico , Núcleo Dorsal da Rafe/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Espermidina/análogos & derivados , Aranhas/metabolismo , Medicamentos Sintéticos/administração & dosagem , Animais , Modelos Animais de Doenças , Hemolinfa/química , Masculino , Microinjeções/métodos , Ratos , Ratos Wistar , Espermidina/administração & dosagem , Resultado do Tratamento
12.
Zoolog Sci ; 38(4): 332-342, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34342954

RESUMO

Animals survive nutrient deficiency by controlling their physiology, such as sugar metabolism and energy-consuming developmental events. Although research on the insect neural mechanisms of the starvation-induced modulation has progressed, the mechanisms have not been fully understood due to their complexity. Myoinhibitory peptides are known to be neuropeptides involved in various physiological activities, development, and behavior. Here, we analyzed the responsiveness of Plautia stali myoinhibitory peptides (Plast-MIPs) to starvation and their physiological role in the brown-winged green bug, P. stali. First, we performed immunohistochemical analyses to investigate the response of Plast-MIP neurons in the cephalic ganglion to fasting under long day conditions. Fasting significantly enhanced the immunoreactivity to Plast-MIPs in the pars intercerebralis (PI), which is known to be a brain region related to various endocrine regulations. Next, to analyze the physiological role of Plast-MIPs, we performed RNA interference-mediated knockdown of Plast-Mip and injection of synthetic Plast-MIP in normally fed and fasted females. The knockdown of Plast-Mip did not have significant effects on the body weight or proportions of ovarian development in each feeding condition. On the other hand, the knockdown of Plast-Mip increased the gonadosomatic index of normally fed females whereas it did not have a significant effect on food intake. Notably, the knockdown of Plast-Mip diminished the fasting-induced reduction of hemolymph reducing sugar levels. Additionally, injection of synthetic Plast-MIP acutely decreased the hemolymph reducing sugar level. Our results suggested responsiveness of Plast-MIPs in the PI to fasting and their functional role in reduction of the hemolymph reducing sugar level.


Assuntos
Carboidratos/química , Hemolinfa/química , Heterópteros/fisiologia , Proteínas de Insetos/metabolismo , Animais , Metabolismo dos Carboidratos , Feminino , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Interferência de RNA
13.
Metabolomics ; 17(8): 73, 2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34390406

RESUMO

BACKGROUND: The New Zealand Green-lipped mussel industry is well-established providing vastly to aquaculture exports. To assess mussel health and reproduction status, visual examination of organs and/or collection of haemolymph is commonly applied. Anesthetics, such as magnesium chloride (MgCl2) can be utilized to prevent muscle contraction and keep shells open during sampling. The specific effects of muscle relaxing agents on baseline metabolism in invertebrates is unknown, but it is evident that molecular, cellular and physiological parameters are altered with these chemical applications. To this end, metabolomics approaches can help elucidate the effects of relaxing agents for better assessment of their use as a research tool. METHODS: Adult Green-lipped mussels were anaesthetized for 3 h in a MgCl2 bath, whereafter haemolymph samples were collected and analyzed via gas chromatography-mass spectrometry applying methyl chloroformate alkylation derivatization. RESULTS: Anesthetized mussels were characterized as non-responsive to manual manipulation, with open valves, and limited siphoning function. Metabolite profiling revealed significant increases in the abundances of most metabolites with an array of metabolic activities affected, resulting in an energy imbalance driven by anaerobic metabolism with altered amino acids acting as neurotransmitters and osmolytes. CONCLUSION: This research is the first to use a metabolomics approach to identify the metabolic consequences of this commonly used bivalve relaxing technique. Ultimately the use of MgCl2 anesthetization as a sampling strategy should be carefully evaluated and managed when performing metabolomics-related research.


Assuntos
Bloqueadores dos Canais de Cálcio , Hemolinfa , Cloreto de Magnésio , Metaboloma , Perna (Organismo) , Anestesia/métodos , Anestesia/veterinária , Anestésicos/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Hemolinfa/química , Hemolinfa/metabolismo , Cloreto de Magnésio/farmacologia , Metaboloma/efeitos dos fármacos , Fármacos Neuromusculares/farmacologia , Perna (Organismo)/efeitos dos fármacos , Perna (Organismo)/metabolismo
14.
Viruses ; 13(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915836

RESUMO

State-of-the-art virus detection technology has advanced a lot, yet technology to evaluate the impacts of viruses on bee physiology and health is basically lacking. However, such technology is sorely needed to understand how multi-host viruses can impact the composition of the bee community. Here, we evaluated the potential of hemolymph metabolites as biomarkers to identify the viral infection status in bees. A metabolomics strategy based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was implemented. First, we constructed a predictive model for standardized bumble bees, in which non-infected bees were metabolically differentiated from an overt Israeli acute paralysis virus (IAPV) infection (R2Y = 0.993; Q2 = 0.906), as well as a covert slow bee paralysis virus (SBPV) infection (R2Y = 0.999; Q2 = 0.875). Second, two sets of potential biomarkers were identified, being descriptors for the metabolomic changes in the bee's hemolymph following viral infection. Third, the biomarker sets were evaluated in a new dataset only containing wild bees and successfully discriminated virus infection versus non-virus infection with an AUC of 0.985. We concluded that screening hemolymph metabolite markers can underpin physiological changes linked to virus infection dynamics, opening promising avenues to identify, monitor, and predict the effects of virus infection in a bee community within a specific environment.


Assuntos
Hemolinfa/metabolismo , Metaboloma , Varroidae/virologia , Viroses/veterinária , Vírus/metabolismo , Animais , Biomarcadores/análise , Hemolinfa/química , Metabolômica/métodos , Fenômenos Fisiológicos Virais
15.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807342

RESUMO

Beetle hyperactive antifreeze protein (AFP) has a unique ability to maintain a supercooling state of its body fluids, however, less is known about its origination. Here, we found that a popular stag beetle Dorcus hopei binodulosus (Dhb) synthesizes at least 6 isoforms of hyperactive AFP (DhbAFP). Cold-acclimated Dhb larvae tolerated -5 °C chilled storage for 24 h and fully recovered after warming, suggesting that DhbAFP facilitates overwintering of this beetle. A DhbAFP isoform (~10 kDa) appeared to consist of 6-8 tandem repeats of a 12-residue consensus sequence (TCTxSxNCxxAx), which exhibited 3 °C of high freezing point depression and the ability of binding to an entire surface of a single ice crystal. Significantly, these properties as well as DNA sequences including the untranslated region, signal peptide region, and an AFP-encoding region of Dhb are highly similar to those identified for a known hyperactive AFP (TmAFP) from the beetle Tenebrio molitor (Tm). Progenitor of Dhb and Tm was branched off approximately 300 million years ago, so no known evolution mechanism hardly explains the retainment of the DNA sequence for such a lo-ng divergence period. Existence of unrevealed gene transfer mechanism will be hypothesized between these two phylogenetically distant beetles to acquire this type of hyperactive AFP.


Assuntos
Proteínas Anticongelantes/genética , Besouros/enzimologia , Besouros/genética , Sequência de Aminoácidos , Animais , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Sequência de Bases , Evolução Biológica , Evolução Molecular , Congelamento , Hemolinfa/química , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Larva , Filogenia , Isoformas de Proteínas/metabolismo , Tenebrio/genética
16.
Integr Zool ; 16(3): 313-323, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33704889

RESUMO

Insects' intestinal microbes have profound effects on the host's physiological traits, which can impact their physiology at both the local (gut) and systemic (body) levels. Nevertheless, the molecular mechanisms underlying host-microbiota interactions, especially in non-model insects, remain elusive. Recently, tissue-specific transcriptomic analysis has been highlighted as a robust tool in studying host-microbe interactions. Plagiodera versicolora is a worldwide leaf-eating pest that primarily feeds on willows and poplar. The interplay between gut microflora and this host beetle has yet to be studied. Herein, we investigate the effects of the gut microbiota on the body mass of P. versicolora larvae, compare the nutrition status of larvae in absence and presence of gut microbiota, and profile gut bacterial loads throughout its developmental larval stages. We then perform comparative transcriptomic analysis of gut and body tissues in axenic and non-axenic larvae. Finally, we confirm the expression patterns of representative genes in nutritional metabolism and immunity. Results show that weight growth is retarded in conventional larvae, with a concomitant increase of total bacterial load by the 5th development day, and germ-free larvae have a higher glucose content than conventional-reared larvae. Both nutritional and immunological analyses indicate that gut bacteria are a burden in the beetle's larval development. These findings elucidate the impacts of gut microbiota on P. versicolora, and provide insight into tissue-specific responses to gut microflora in this pest at the genetic level, boosting our understanding of the molecular mechanisms underlying host-microbe interactions in leaf beetles and beyond.


Assuntos
Besouros/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/genética , Peso Corporal , Besouros/crescimento & desenvolvimento , Besouros/imunologia , Besouros/metabolismo , Dieta , Perfilação da Expressão Gênica , Vida Livre de Germes , Hemolinfa/química , Larva/imunologia , Larva/metabolismo , Larva/microbiologia , RNA Ribossômico 16S/genética
17.
J Appl Anim Welf Sci ; 24(2): 132-148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33559500

RESUMO

The use of full spectrum illumination, including ultraviolet (UV), during captive husbandry of arachnids is common practice. The effect of this on captive arachnids has not been previously investigated. Comparison of key behavioral changes and hemolymph cortisol immunoreactivity was undertaken with and without full spectrum lighting. King baboon spiders, Pelinobius muticus and Indian giant scorpions, Heterometrus swammerdami were selected for the study. Both organisms spent all their time hidden when exposed to full spectrum light compared to low-level ambient light except for one instance. There was no significant difference in burrowing and webbing in P. muticus when exposed to full spectrum lighting. There was a decrease in the number of behaviors or postures expressed in full spectrum lighting compared to ambient light for both species. Cortisol immunoactivity of both species were significantly elevated after exposure to full spectrum lighting. This study provides the first evidence of detectable cortisol immunoactivity in arachnid hemolymph. These levels changed in response to full spectrum illumination and were linked to behavioral changes. This suggests that a common husbandry practice may be detrimental to arachnids.


Assuntos
Comportamento Animal/fisiologia , Iluminação , Escorpiões/fisiologia , Aranhas/fisiologia , Criação de Animais Domésticos/métodos , Animais , Comportamento Animal/efeitos da radiação , Feminino , Hemolinfa/química , Hidrocortisona/análise , Escorpiões/efeitos da radiação , Aranhas/efeitos da radiação , Raios Ultravioleta
18.
J Sep Sci ; 44(8): 1641-1651, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33458950

RESUMO

This study assesses the extraction of eleven pharmaceuticals, five pesticides, five perfluoroalkyl substances, and two illicit drugs in hemolymph from (Mytilus Galloprovincialis). Four extraction procedures using Phree™ Phospholipid Removal cartridges were tested using different volumes of methanol (400 and 600 µL) and acetonitrile (300 and 450 µL). The pollutants were determined by high-performance liquid chromatography-tandem mass spectrometry. The use of methanol gave several problems during the extraction procedure, such as longer times and sample loss. Three methods (acetonitrile 300 and 450 µL; and methanol 600 µL) were validated. Recoveries at three concentration levels (5, 50, and 100 ng/mL) ranged 35.1-129.0 and 29.3-133.0% for acetonitrile 300 and 450 µL, respectively, while recoveries for methanol 600 µL ranged 52.2-166.0%. Limits of detection were < 10 ng/mL for most analytes using any of the methods. Methanol 600 µL was the only method capable to extract the illicit drug 4-methoxyphencyclidine and provided a better peak shape and higher signal-noise ratio. When applied to non-spiked samples from local markets salicylic acid and diclofenac were detected at 33.50-97.79 and 28.30-30.31 ng/mL respectively. To our knowledge, there are no methods to determine organic contaminants in hemolymph and this is the first application of Phree™ cartridges for mussel hemolymph extraction.


Assuntos
Poluentes Ambientais/análise , Fluorocarbonos/análise , Hemolinfa/química , Drogas Ilícitas/análise , Praguicidas/análise , Animais
19.
Parasit Vectors ; 14(1): 40, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430900

RESUMO

BACKGROUND: Leishmaniasis is a major parasitic disease worldwide, except in Australia and Antarctica, and it poses a significant public health problem. Due to the absence of safe and effective vaccines and drugs, researchers have begun an extensive search for new drugs. The aim of the current study was to investigate the in vitro leishmanicidal activity of larval saliva and hemolymph of Lucilia sericata on Leishmania tropica. METHODS: The effects of different concentrations of larval products on promastigotes and intracellular amastigotes of L. tropica were investigated using the mouse cell line J774A.1 and peritoneal macrophages as host cells. The 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and direct observation and counting method were used to assess the inhibitory effects and cell cytotoxicity of the larval products. The effects of larval products on the amastigote form of L. tropica were quantitatively estimated by calculating the rate of macrophage infection, number of amastigotes per infected macrophage cell, parasite load and survival index. RESULTS: The 50% cytotoxicity concentration (CC50) value of both larval saliva and hemolymph was 750 µg/ml, and the 50% inhibitory concentration (IC50) values were 134 µg/ml and 60 µg/ml for larval saliva and larval hemolymph, respectively. The IC50 for Glucantime, used a positive control, was (11.65 µg/ml). Statistically significant differences in viability percentages of promastigotes were observed for different doses of both larval saliva and hemolymph when compared with the negative control (p ≤ 0.0001). Microscopic evaluation of the amastigote forms revealed that treatment with 150 µg/ml larval hemolymph and 450 µg/ml larval saliva significantly decreased the rate of macrophage infection and the number of amastigotes per infected macrophage cell. CONCLUSION: Larval saliva and hemolymph of L. sericata have acceptable leishmanicidal properties against L. tropica.


Assuntos
Antiprotozoários/farmacologia , Extratos Celulares/farmacologia , Dípteros/química , Hemolinfa/química , Larva/química , Leishmania tropica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Saliva/química , Animais , Linhagem Celular , Células Cultivadas , Dípteros/anatomia & histologia , Concentração Inibidora 50 , Macrófagos/parasitologia , Camundongos , Glândulas Salivares/química , Glândulas Salivares/citologia
20.
Toxins (Basel) ; 14(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35050987

RESUMO

Bees originally developed their stinging apparatus and venom against members of their own species from other hives or against predatory insects. Nevertheless, the biological and biochemical response of arthropods to bee venom is not well studied. Thus, in this study, the physiological responses of a model insect species (American cockroach, Periplaneta americana) to honeybee venom were investigated. Bee venom toxins elicited severe stress (LD50 = 1.063 uL venom) resulting in a significant increase in adipokinetic hormones (AKHs) in the cockroach central nervous system and haemolymph. Venom treatment induced a large destruction of muscle cell ultrastructure, especially myofibrils and sarcomeres. Interestingly, co-application of venom with cockroach Peram-CAH-II AKH eliminated this effect. Envenomation modulated the levels of carbohydrates, lipids, and proteins in the haemolymph and the activity of digestive amylases, lipases, and proteases in the midgut. Bee venom significantly reduced vitellogenin levels in females. Dopamine and glutathione (GSH and GSSG) insignificantly increased after venom treatment. However, dopamine levels significantly increased after Peram-CAH-II application and after co-application with bee venom, while GSH and GSSG levels immediately increased after co-application. The results suggest a general reaction of the cockroach body to bee venom and at least a partial involvement of AKHs.


Assuntos
Venenos de Abelha/efeitos adversos , Hemolinfa/efeitos dos fármacos , Imunidade Inata , Hormônios de Inseto/farmacologia , Oligopeptídeos/farmacologia , Periplaneta/imunologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Sistema Nervoso Central/química , Sistema Nervoso Central/efeitos dos fármacos , Hemolinfa/química , Periplaneta/química , Periplaneta/efeitos dos fármacos , Ácido Pirrolidonocarboxílico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...